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Abstract

The tangential–subloading surface model can describe the normal-plastic strain rate due to the rate of stress inside

the yield surface and the tangential-plastic strain rate due to the stress rate component tangential to the subloading

surface. The localized and diffuse bifurcation modes of the rectangular soil specimen subjected to plane strain loading

under the undrained conditions are analyzed by adopting the tangential–subloading surface model, exhibiting the

characteristic regimes of the governing equations (elliptic, hyperbolic and parabolic) in this article. Further, the con-

ditions for shear band formation, shear band inclination, diffuse bifurcation modes, and the long and short wavelength

limit of diffuse modes are discussed in relation to material properties and the state of stress, i.e. the stress-ratio and the

normal-yield ratio. The tangential-plastic strain rate makes the inception of bifurcation modes easier in not only

normal-yield, but also subyield states.
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1. Introduction

Plastic instability phenomenon is an important problem in geomechanics in relation to the progressive

failure of geostructures. It is induced by material softening and geometrical nonlinearity and leads to the

bifurcation of deformation such as diffuse geometric modes (bulging and buckling) and localized modes

(shear band).

Localized and diffuse bifurcation modes of deformation, so-called shear band and, bulging or buckling,

respectively, in materials are widely observed when a deformation becomes large, approaching a failure.

The occurrence of localized and diffuse bifurcation modes is unavoidable even in the element test of a
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material specimen, even though every effort is made to prevent inhomogeneity of deformation. The for-

mation of localized and diffuse bifurcation modes can be regarded as bifurcation from a homogeneous

fundamental path that can hold only in an unstable manner, resulting in so-called material instability.

Various theoretical interpretations for the localized and diffuse bifurcation modes of deformation (Hill
and Hutchinson, 1975; Rudnicki and Rice, 1975; Young, 1976; Needleman, 1979; Vardoulakis, 1980, 1981;

Yatomi et al., 1989; Chau and Rudnicki, 1990; Bardet, 1991; Iizuka et al., 1992; Papamichos and

Vardoulakis, 1995, etc.) have been attempted up to the present. Their results suggest a deficiency in the

traditional elastoplastic constitutive equations (cf. Schofield and Wroth, 1968; Bousshine et al., 2001; Peric

and Ayari, 2002) in which the plastic strain rate is independent of the stress rate component tangential to

the yield/loading surface, letting stress rate component tangential to the yield/loading surface and its

influence on the inelastic strain rate be called the tangential stress rate and the tangential stress rate effect.

The tangential stress rate effect has been experimentally measured by Ishihara and Towhata (1983), Miura
et al. (1986), Pradel et al. (1990) and Gutierrez et al. (1991) for soils.

As reviewed by Hashiguchi (1997) and Hashiguchi and Tsutsumi (2001), various elastoplastic consti-

tutive equations extended to describe the tangential stress rate effect have been proposed. Among them,

however, the model proposed by Hashiguchi and Tsutsumi (2001) is applicable to an arbitrary loading

process, including an unloading and a reloading process, fulfilling the mechanical requirements for con-

stitutive equations (Hashiguchi, 1993a,b, 1997), i.e. the continuity condition, the smoothness condition, the

Masing effect and the work rate-stiffness relaxation. It is formulated by introducing an additional strain

rate, named tangential-plastic strain rate, induced by the deviatoric tangential stress rate into the subloading
surface model (Hashiguchi and Ueno, 1977; Hashiguchi, 1980, 1989; Hashiguchi et al., 2002). It is of a

simple form of rate-linearity enabling a reciprocal expression, i.e. the analytical expression of strain rate in

terms of stress rate and its inverse expression, and keeps the symmetry of the stiffness modulus, thus leading

to convenient analyses of boundary value problems.

The present article extends the pervious bifurcation analyses of a rectangular specimen subjected to

plane strain loading by Hill and Hutchinson (1975), Young (1976), Needleman (1979), Vardoulakis (1981),

Chau and Rudnicki (1990), Hashiguchi and Khojastehpour (2003) to include subloading surface model

with tangential stress rate effect (Hashiguchi and Tsutsumi, 2001; Hashiguchi, in press) for soils. In this
article, the constitutive equation of soils will be first reviewed briefly, in which the material functions of soils

are incorporated into the subloading surface model with the tangential stress rate effect. This is applicable

to soils in not only normal-yield, but also subyield states, for not only lower but also higher stress ratio than

the critical state. Then, based on the constitutive equation, the localized and diffuse bifurcation modes of a

rectangular soil specimen subjected to plane strain loading under the undrained conditions are analyzed

and the characteristic regimes, elliptic, hyperbolic or parabolic, are identified depending on the state of

stress and material parameters. Further, the conditions for shear band formation, shear band inclination,

diffuse bifurcation modes, and the long and short wavelength limit of diffuse modes are discussed in relation
to the material properties and the state of stress.
2. Outline of the tangential–subloading surface model

Denoting the current configuration of the material particle as x and the current velocity as v, the velocity

gradient is described as L ¼ ov=ox, by which the strain rate and the continuum spin are defined as

D ð¼ ðLþ LTÞ=2Þ and W ð¼ ðL� LTÞ=2Þ, respectively, ð ÞT standing for the transpose.
Now let it be assumed that the strain rate D is additively decomposed into the elastic strain rate De and

the inelastic strain rate Di, i.e.
D ¼ De þDi; ð1Þ



M. Khojastehpour, K. Hashiguchi / International Journal of Solids and Structures 41 (2004) 5541–5563 5543
where the elastic strain rate De is given by
De ¼ E�1r
�
: ð2Þ
r is the Cauchy stress and (�) indicates the proper corotational rate with the objectivity and the fourth-order

tensor E is the elastic modulus. Further, let the inelastic strain rate Di be additively decomposed into the

normal-plastic strain rate Dp
n and the tangential-plastic strain rate Dp

t which are induced by the normal and

tangential stress rate components, respectively, to the subloading surface, called the normal and tangential

stress rates, respectively, i.e.
Di ¼ Dp
n þDp

t : ð3Þ
Here, it is assumed that the tangential stress rate component inducing the tangential-plastic strain rate Dp
t is

deviatoric stress, obeying the Rudnicki and Rice’s (1975) conclusion that ‘‘no vertex can result from

hydrostatic stress increments’’ based on the consideration of the sliding mechanism in the fissure model. Let

Dp
n and Dp

t be formulated in this section.

Let it be postulated that the normal-plastic strain rate is given by the subloading surface model with the

smooth elastic-plastic transition (Hashiguchi, 1980). Now, this model will be reviewed briefly.
Assume the yield condition:
f ðrÞ ¼ F ðHÞ: ð4Þ
The scalar H is the isotropic hardening/softening variable. Let it be assumed that the function f is
homogeneous to degree one in the tensor r satisfying f ðsrÞ ¼ sf ðrÞ for any nonnegative scalar s. Here,

assume that the evolution of the internal structure of materials is caused by the normal-plastic strain rate

Dp
n, and thus the evolution equation of H is homogeneous to degree one in Dp

n. Then, assume that it is linear

function of Dp
n, i.e.
H
�
¼ trffhðr;HÞDp

ng; ð5Þ
where fh is the second-order tensor, (�) stands for the material-time derivative and tr( ) is the trace.

Hereafter, the elastoplastic constitutive equation will be formulated in the framework of unconventional

plasticity (Hashiguchi et al., 2002) as the extended plasticity theory such that the interior of the yield surface

is not a purely elastic domain, but a plastic deformation is induced by the rate of stress inside the yield

surface. Thus, the conventional yield surface is renamed as the normal-yield surface, since its interior is not

regarded as a purely elastic domain in the present model.

Now, let the subloading surface be introduced, which always passes through the current stress point r
and also keeps the similar shape and the configuration of similarity to the normal-yield surface with respect

to the origin of stress space, i.e. r ¼ 0. The approaching degree to the normal-yield state can be described

by the ratio of the size of the subloading surface to that of the normal-yield surface, i.e. the similarity-ratio

R of these surfaces, while R ¼ 0 corresponds to the most elastic state in which the stress coincides with the

similarity-center and R ¼ 1 to the normal-yield state in which the stress exists on the normal-yield surface.

Hereinafter, the similarity-ratio R is called the normal-yield ratio. Then, the subloading surface is described

as
f ðrÞ ¼ RF ðHÞ: ð6Þ
The normal-yield and subloading surfaces are illustrated in Fig. 1, where ry ð¼ r=RÞ on the normal-yield

surface is the conjugate stress of the current stress r on the subloading surface.

It is observed from experiments that the stress asymptotically approaches the normal-yield surface in the
plastic loading process Dp

n 6¼ 0. Thus, the following evolution equation of the normal-yield ratio R be as-

sumed.
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Fig. 1. Normal-yield and subloading surfaces.
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R
�
¼ UkDp

nk for Dp
n 6¼ 0: ð7Þ
Here, k k stands for the magnitude and U is the monotonically decreasing function of the normal-yield

ratio R, satisfying
U ¼ 1 for R ¼ 0;
0 for R ¼ 1;

�
ðU < 0 for R > 1Þ; ð8Þ
where the fact that the stress increases without a plastic strain rate at the most elastic state R ¼ 0 is

incorporated. The function U satisfying Eq. (8) be simply given by
U ¼ �uR lnR; ð9Þ

where uR is a material constant prescribing the approaching rate of the current stress to the normal-yield

surface with a plastic deformation.

Assuming the associated flow rule:
Dp
n ¼ kNðk > 0Þ; ð10Þ
where
k ¼ trðNr
� Þ

Mp
n

; ð11Þ

N 
 of ðrÞ
or

�
of ðrÞ
or

����
���� ðkNk ¼ 1Þ; ð12Þ

Mp
n 
 F 0

F
h

�
þ U

R

�
trðNrÞ; ð13Þ
whereMp
n is called normal-plastic modulus and h is a function of the stress, plastic internal variables and N in

degree one, which is related to H
�
as
h 
 trðfhNÞ ¼
H
�

k
; ð14Þ
since the rates of internal variables include k in degree one.

The normal-plastic strain rate (10) with Eqs. (11) and (13) is obtained by substituting the associated flow
rule (10) into the extended consistency condition obtained by incorporating the evolution rule (7) of the

normal-yield ratio R into the time-differentiation of Eq. (6) for the subloading surface. Then, the plastic
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loading process develops gradually as the stress approaches the normal-yield surface, exhibiting a smooth

elastic–plastic transition. Thus, the subloading surface model fulfills the smoothness condition (Hashiguchi,

1993b, 1997, 2000).

Noting that the tangential-plastic strain rate Dp
t , as well as the normal-plastic strain rate Dp

n, would not
be induced in the state R ¼ 0, but would be gradually induced as the stress approaches the normal-yield

surface, let the tangential-plastic strain rate Dp
t be formulated as
Dp
t ¼

1

Mp
t

r
� �
t ; ð15Þ
where Mp
t is a monotonically decreasing function of R satisfying the following conditions.
Mp
t ¼ 1 for R ¼ 0;

T for R ¼ 1:

�
ð16Þ
T being a material function of the stress and the plastic internal variables in general. The function Mp
t ,

called the tangential-plastic modulus, satisfying Eq. (16) is simply given by
Mp
t ¼ TR�b; ð17Þ
where b ðP1Þ is a material constant. The second-order tensor r
� �
t is given as follows:
r
� �
t 
 r

� � � r
� �
n; r

� �
n 
 trðn�r� �Þn�; ð18Þ
n� 
 of ðrÞ
or

� ���
of ðrÞ
or

� ������
���� ðkn�k ¼ 1Þ: ð19Þ
ð Þ� stands for the deviatoric part and n� is the normalized deviatoric outward-normal tensor of the sub-

loading surface. The stress rate r
� �
t is called the deviatoric tangential stress rate fulfilling
trðNr
� �
t Þ ¼ 0; trðr� �t Þ ¼ 0: ð20Þ
The deviatoric tangential stress rate r
� �
t in the principal stress space is directed toward the tangential line

of the closed curve formed by the intersection of the subloading surface and deviatoric stress plane as

illustrated in Fig. 2. The tangential-plastic strain rate Dp
t is related linearly to the deviatoric-tangential stress

rate r
� �
t through the similarity-ratio R so as to exhibit the smooth elastic–inelastic transition. Besides, it can

be formulated so as to be hardly induced when a stress lies inside the normal-yield surface by giving a large
value to the material parameter b.

The strain rate D is given as
D ¼ E�1r
� þ trðNr

� Þ
Mp

n

Nþ 1

Mp
t

r
� �
t : ð21Þ
Now, let the elastic modulus tensor E be given by the Hooke’s type as
Eijkl ¼ K
�

� 2

3
G
�

dijdkl þ Gðdikdjl þ dildjkÞ; ð22Þ
where K and G are the elastic bulk and shear moduli, respectively, which are functions of the stress and
internal state variables in general and dij is the Kronecker’s delta. The inverse expression of Eq. (21) is given

as



Fig. 2. The deviatoric tangential stress rate r
� �
t illustrated in the principal stress space.
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r
� ¼ Mp

t

Mp
t þ 2G

ED

�
� trðNEDÞ
Mp

n þ trðNENÞ EN

�
þ 2G
Mp

t

ðtrðn�ENÞn� þ 1

3
trðENÞIÞ

�

þ 2G
Mp

t

ðtrðn�EDÞn� þ 1

3
trðEDÞIÞ

�
: ð23Þ
The positive proportionality factor in the associated flow rule is expressed in terms of the strain rate D,

rewriting k by K, as follows:
K ¼ trðNEDÞ
Mp

n þ trðNENÞ ð24Þ
because of trðNEr
� �
t Þ ¼ 0 for Eq. (22). Then, let the loading criterion be given by the positiveness of the

proportionality factor K as follows (Hashiguchi, 2000):
Dp
n 6¼ 0 : K > 0;
Dp

n ¼ 0 : K6 0:

�
ð25Þ
3. Material functions for soils

The particular forms of the material functions for soils are given in this section. We focus our attention
on the behavior of saturated soils, and then let the Cauchy stress tensor r be meant the effective Cauchy

stress, excluding a pore pressure u from the total Cauchy stress T, which is defined by
r ¼ Tþ uI: ð26Þ
where u as well as pressure pr ð
 �rmÞ is taken to be positive for compression.

The subloading surface for simple isotropic soils is given as follows:
f ðrÞ ¼ prð1þ v2Þ; ð27Þ
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where
pr 
 � 1

3
tr r; v 
 kgk

mc

; ð28Þ

g 
 r�

pr
; r� 
 r þ prI: ð29Þ
mc is the material constant describing the stress ratio kgk in the critical state line.

The isotropic hardening/softening function F is given by
F ¼ F0 exp
H

q � c

� �
; ð30Þ
where F0 is the initial value of F . q and c are material constants describing the slope of the normal con-

solidated curve and the swelling curve, respectively, in the ðln V ; ln P Þ plane (V : volume, P : pressure). The
evolution equation of the isotropic hardening variable H is given by
H
�
¼ �trðDp

nÞ: ð31Þ
Further, we assume the function T in the tangential-plastic modulus Mp
t of Eq. (17) as
T ¼ pr

avc
; ð32Þ
a and c are material constants. Then, the tangential-plastic modulus Mp
t in Eq. (15) with Eqs. (17) and (32)

is formulated to induce the tangential stress rate effect gradually with the increase in v and/or R, whilst the
effect decreases with the increase in pressure. On the other hand, the equation of Yatomi et al. (1989) for the
tangential-plastic modulus, i.e.Mp

t ¼ Cðmc � kgkÞpr (C: material constant) is applicable only to the normal-

yield state R ¼ 1 under a lower stress ratio than that in the critical state, i.e. v6 1.

The bulk and shear moduli are given as
K ¼ pr

c
; G ¼ 3ð1� 2mÞ

2ð1þ mÞ K; ð33Þ
where m is Poisson’s ratio.

The concrete form of the normal-plastic modulus in Eq. (13) for isotropic soils is described from Eqs.

(27)–(30) as follows:
Mp
n ¼ � uR lnRþ R

q � c
1� v2ffiffiffi

1
p

� �
Fffiffiffi
1

p ;

1 
 1
3
ð1� v2Þ2 þ 2

v
mc

� �2

:

9>>>=
>>>;

ð34Þ
Hereafter, the material constants are chosen as q ¼ 0:0924, c ¼ 0:0168, mc ¼ 1:17, b ¼ 1:0, c ¼ 3:0 and

m ¼ 0:333.
4. Constitutive relations

Consider a soil specimen in the shape of a rectangular and homogeneous block under the plane strain
deformations subjected to continuing biaxial loading of homogeneous normal stress in the ðx1; x3Þ plane as
the current axial compressive stress r11 on the frictionless ends and the lateral compressive stress r33 on the
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sides, which starts from an isotropically consolidated state (see Fig. 3). At the onset of deformation, we

suppose the specimen undergoes a finite homogenous deformation and the pore water pressure maintains

homogeneous. Furthermore, the deformed specimen preserves a rectangular shape with the current

dimensions 2a1 � 2a3 at the onset of bifurcation. The shear band, symmetric and anti-symmetric modes
may be induced as shown in Fig. 3. Considering the constitutive relationship (23), it holds that
Fig. 3.

band)
r
�
11 � r

�
33 ¼ 2l�ðD11 � D33Þ;

r
�
31 ¼ 2lD31;

)
ð35Þ
with
D11 þ D33 ¼ 0; D12 ¼ D22 ¼ D23 ¼ 0: ð36Þ
l� and l which are the instantaneous shear moduli for the normal effective stress difference r11 � r33 and for
shear stress r31, respectively are derived as follows (Hashiguchi and Tsutsumi, 2003):
l� ¼ G
M r

n

M e
n

ð6GÞ; ð37Þ
l ¼ G
Mp

t

Mp
t þ 2G

ð6GÞ; ð38Þ
where
M r
n 
 Mp

n þ K
1
ð1� v2Þ2; M e

n 
 Mp
n þ 1

1
K

�
� 2

3
G
�
ð1� v2Þ2 þ 2G: ð39Þ
Further, for biaxial loading under the undrained plane strain conditions starting from the isotropic-

consolidation state, the following simple relationship can be obtained.
(a) The boundary stresses at the onset of bifurcation and the geometric configuration. (b) The localized bifurcation mode (shear

and the diffuse bifurcation modes (bulging and buckling).



0.01
0.02
0.05
0.10
0.15

0.0

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

-0.2

a = 0.00 (elastic)

0.0

*

G
µ
G
µ

χ

0.01
0.02
0.05
0.10
0.15

0.0

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

-0.2

a = 0.00 (elastic)

0.0

G
µ
G
µ

χ

Fig. 4. Relationships of the instantaneous shear moduli vs. the variable v with the variation of the material parameter a in the normal-

yield state ðR ¼ 1Þ.

Fig. 5.

a ¼ 0:0

M. Khojastehpour, K. Hashiguchi / International Journal of Solids and Structures 41 (2004) 5541–5563 5549
1

2
ðr11 � r33Þ ¼

ffiffiffi
2

p

2
mcprv: ð40Þ
The instantaneous shear modulus l� in Eq. (37) is independent of the tangential-plastic strain rate and

gradually decreases from the elastic shear modulus G as v and R increase, as shown in Fig. 4, for the

normal-yield state R ¼ 1 and in Fig. 5 for uR ¼ 10, whilst it increases inversely in the regime far denser than
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critical state (v � 1 and Mp
n < 0). Note that l� is slightly negative near the normal-yield state and just over

the critical state.

The instantaneous shear modulus l in Eq. (38) decreases monotonically with the increase in the value of

the material parameter a and with the increase in the variables v and R, as shown in Figs. 4 and 5.
The feature of the present formulation where the tangential-plastic strain rate, as well as the normal-

plastic strain rate, is induced gradually as the stress approaches the normal-yield surface, i.e. as R ! 1,

fulfilling both the continuity and smoothness conditions is shown in Figs. 4 and 5. On the other hand, in

conventional plasticity models with a ¼ 0, l� and l suddenly jump from the purely elastic response to the

normal-yield response at the moment when the stress reaches the normal-yield surface.
5. Governing equations

At the current time t, let the body be bounded by closed surface s and let t denote the surface traction

vector. Then, it is required to satisfy
Z
s
tds ¼ 0 ð41Þ
for equilibrium without the body force. Using the divergence theorem and the relation t ¼ Tn (n: the

outward unit normal to the surface s), we obtain the equilibrium equation
divT ¼ 0: ð42Þ

Noting that ðdsÞ� ¼ ðtrD� n �DnÞds, the differentiation of Eq. (41) with respect to time is given by
Z

s
p
�
ds ¼ 0; ð43Þ
where p
� ¼ t

�
þ ðtrD� n �DnÞt is called the total nominal traction rate. Further, the total nominal (first Piola–

Kirchhoff) stress rate P
�
defined by p

� ¼ P
�
n is related to the total Cauchy stress rate T

�
by
P
�
¼ T

�
þ ðtrDÞT� TLT: ð44Þ
Since the stress rates T
�
and r

�
are not invariant under rigid rotation, let the corresponding Jaumann rate

be introduced as the objective corotational rates:
T
�

 T

�
þ TW�WT; ð45Þ

r
� 
 r

� þ rW�Wr: ð46Þ

Substituting Eqs. (45) and (46) to Eq. (44) with Eq. (26), the total nominal stress rate P

�
can be rewritten as
P
�
¼ T

�
þ ðtrDÞT� TDþWT ¼ P

� 0
� u

�
I� uðtrDÞIþ uLT; ð47Þ
where
P
� 0

¼ r
� þ ðtrDÞr � rDþWr: ð48Þ
P
� 0

is called the effective nominal stress rate (Yatomi et al., 1989).

Using the divergence theorem in Eq. (43), the equilibrium equation is obtained as
divP
� 0

� gradu
� ¼ 0: ð49Þ
for gradu ¼ 0.
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For the plane strain deformation, the rate of deformation tensor D and the spin tensor W are given by
D ¼

ov1
ox1

1

2

ov1
ox3

þ ov3
ox1

� �
1

2

ov1
ox3

þ ov3
ox1

� �
ov3
ox3

2
664

3
775; ð50Þ

W ¼
0

1

2

ov1
ox3

� ov3
ox1

� �

� 1

2

ov1
ox3

� ov3
ox1

� �
0

2
664

3
775: ð51Þ
In addition, using the relationships between the Jaumann rate and the material time rate of Cauchy stress,

Eq. (46), and between the effective nominal stress rate P
� 0

and the Jaumann rate of Cauchy stress r
�
, Eq. (48),

the following equations are obtained, respectively:
r
� ¼

r
�
11 r

�
13 þ s

ov1
ox3

� ov3
ox1

� �

r
�
31 þ s

ov1
ox3

� ov3
ox1

� �
r
�
33

2
664

3
775; ð52Þ

P
� 0

¼
r
�
11 � r11

ov1
ox1

r
�
13 � s

ov1
ox3

� r
ov3
ox1

r
�
31 � r

ov1
ox3

þ s
ov3
ox1

r
�
33 � r33

ov3
ox3

2
664

3
775; ð53Þ
where
r ¼ 1

2
ðr11 þ r33Þ; s ¼ 1

2
ðr11 � r33Þ: ð54Þ
Let the bifurcation condition in the biaxial compressive loading under the undrained condition be

analyzed, as established by Hill and Hutchinson (1975) for plastically-incompressible metals and followed
by Young (1976), Needleman (1979), Vardoulakis (1981), Chau and Rudnicki (1990) and Bardet (1991).

Consider a pure homogeneous deformation process which starts from an isotropically consolidated state

and proceeds up to the instant of the bifurcation phenomena, where the principal stress axes coincide with

the directions of the coordinate axes x1 and x3. On the ends ðx1 ¼ �a1Þ,the specimen is loaded by a com-

pressive velocity with no shear traction and on the side ðx3 ¼ �a3Þ, a constant lateral hydrostatic pressure.

Using Eq. (49) for continuing linear equilibrium, the total nominal stress rate must satisfy
oP
� 0
11

ox1
þ oP

� 0
13

ox3
� ou

�

ox1
¼ 0;

oP
� 0
33

ox3
þ oP

� 0
31

ox1
� u

�

ox3
¼ 0:

9>>>=
>>>;

ð55Þ
Eq. (55) can be written as follows:
o

ox1
ðP
� 0
11 � P

� 0
33Þ þ 2

o

ox3
P
� 0
13 � 2

o

ox1
u
� ¼ � o

ox1
ðP
� 0
11 þ P

� 0
33Þ;

o

ox3
ðP
� 0
11 � P

� 0
33Þ � 2

o

ox1
P
� 0
31 þ 2

o

ox3
u
� ¼ o

ox3
ðP
� 0
11 þ P

� 0
33Þ:

9>>=
>>; ð56Þ
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Differentiating and combining the two relationships in Eq. (56) to eliminate P
� 0
11 þ P

� 0
33, the resulting can be

expressed in terms of the derivatives of velocities using Eq. (53). Then, introduce the stream function

Wðx1; x3Þ(Hill and Hutchinson, 1975) leading to
v1 ¼
oW
ox3

; v3 ¼
oW
ox1

: ð57Þ
The substitution of Eqs. (53) and (57) into Eq. (56) with constitutive relations (35) leads to
ðl � sÞ o
4W
ox43

þ 2ð2l� � lÞ o4W
ox21ox

2
3

þ ðl þ sÞ o
4W
ox41

¼ 0: ð58Þ
Eq. (58) is a fourth order partial differential equation of the mixed type that can be elliptic, hyperbolic or
parabolic, depending on the current state of stress and internal variables. The particular linearization

described here yields a governing equation by applying subloading surface model with tangential stress rate

effect.
6. Localized bifurcation and classification of regimes

The condition of shear band formation at the onset of strain localization in the biaxial compressive
loading under the undrained conditions is analyzed briefly in this section. The unit vector normal to a shear

band is denoted by nðn1; n3Þ (see Fig. 3). The stream function Wðx1; x3Þ, which represents a simple shear

parallel to planes n1x1 þ n3x3 ¼ const:, is given by
W ¼ Wðn1x1 þ n3x3Þ: ð59Þ

The substitution of Eq. (59) into (58) gives a fourth order algebraic characteristic equation as follows:
ðl � sÞn43 þ 2ð2l� � lÞn21n23 þ ðl þ sÞn41 ¼ 0: ð60Þ

The condition for the formation of shear band is given as a loss of ellipticity of Eq. (60), whilst the

solutions of n3=n1 in Eq. (60) are classified into the elliptic complex (EC) and imaginary (EI), parabolic (P)
and hyperbolic (H) regimes, according to the existence of zero, two, and four real roots for (60), respec-

tively. The classifications of the regimes, under the restrictions l� > 0, l > 0 and s > 0, are as follows:

Elliptic complex regime:
l
2l� >

1

2

s
2l�

� �2

þ 1

2
: ð61Þ
Elliptic imaginary regime:
l
2l� <

1

2

s
2l�

� �2

þ 1

2
; l > s; 2l� > l: ð62Þ
Parabolic regime:
l < s: ð63Þ
Hyperbolic regime:
l
2l� <

1

2

s
2l�

� �2

þ 1

2
; l > s; 2l� < l: ð64Þ
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The boundaries between the characteristic regimes are classified as follows:

Elliptic complex–elliptic imaginary boundary:
2l� > l;
n3
n1

� �
1;2;3;4

¼ �i
2l� � l
l � s

� �1=2

; i ¼
ffiffiffiffiffiffiffi
�1

p
:

9=
; ð65Þ
Elliptic complex–hyperbolic boundary:
2l� < l;
n3
n1

� �
1;2;3;4

¼ � � 2l� � l
l � s

� �1=2

:

9=
; ð66Þ
Elliptic–parabolic boundary:
2l� > l;
n3
n1

� �
1;2

¼ 0;
n3
n1

� �
3;4

¼ �i 2
2l� � l
l � s

� �1=2

:

9=
; ð67Þ
Hyperbolic–parabolic boundary:
2l� < l;
n3
n1

� �
1;2

¼ 0;
n3
n1

� �
3;4

¼ � � 2
2l� � l
l � s

� �1=2

:

9=
; ð68Þ
Let it be assumed that the shear band will be formed at the instant when the ðs=2l�; l=2l�Þ trajectory
passes through the EC–H boundary. Then, the inclination angle u of shear band, i.e. the angle measured in

anti-clockwise direction from the maximum principal stress ðr11Þ direction to the direction of shear band

(the direction normal to shear band) is given from Eq. (60) as
u ¼ tan�1 n3
n1

� �
¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2l� � l

l � s

s
: ð69Þ
Here, note that when the trajectory directly passes though the E–P boundary ðl ¼ s; 2l� > lÞ n1 ¼ 0 is

derived from Eq. (60), and thus the direction of the shear band is unrealistically predicted perpendicular to

the maximum principal stress direction, i.e. u ¼ p=2. Therefore, one would have only to consider the EC–H

boundary for shear band formation.

The relationships between the inclination angle u of shear band vs. s=2l� for several levels of material

parameter a ranging from 0.1 to 0.55 are obtained from Eq. (69) and depicted in Fig. 6. The angle u in-
creases for a bigger material parameter a. In cases of a larger material parameter a, the inclination angle u
is predicted unrealistically as u > p=2 since the trajectories directly pass though the E–P boundary.

The regions in the stress space where the shear band can be induced are depicted in Fig. 7 for three levels

of the material parameter: (a) uR ¼ 1, (b) uR ¼ 10 and (c) uR ¼ 100. It is found that the lower material

parameter uR gives a wider region of stress for the shear band formation, inducing inelastic deforma-

tion from the lower value of R. It should be noted that the shear band is formed for a stress ratio lower

than the critical state in the case of R ¼ 1, but it is done even for stress ratios higher than the critical state

in the case of R < 1, while the range of the stress inducing the shear band is affected by the material
parameter uR.
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7. Diffuse bifurcation modes and classification of regimes

In this section, we investigate the possibility of diffuse bifurcations, which precedes localization, for a

rectangular soil specimen with the dimensions 2a1 � 2a3 at the onset of bifurcation (see Fig. 3). We examine

the possibility of incremental deformation when the ends are subject to a current axial stress r11 and the
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sides subject to a constant hydrostatic confining pressure r11 ¼ rc. The stream function Wðx1; x3Þ, which
represents the diffuse bifurcation modes is given by
Wðx1; x3Þ ¼ vðx3Þ cosðfx1Þ; ð70Þ

where f ¼ mp=2a1, m ¼ 1; 2; 3; . . .. The substitution of Eq. (70) into Eq. (57) leads to
v1 ¼ v0ðx3Þ cosðfx1Þ;
v3 ¼ fvðx3Þ sinðfx1Þ;

�
ð71Þ
where v0 ¼ dv3=dx3. Here, as in Hill and Hutchinson (1975), the origin of coordinates is at the rectangular

specimen center when m is odd and at a distance a1=m from the center when m is even. Substituting of the

eigenmode (71) into Eq. (58), the following governing differential equation is obtained for vðx3Þ.
ðl � sÞv0000 � 2ð2l� � lÞf2v00 þ ðl þ sÞf4v ¼ 0: ð72Þ

Noting that Eq. (47), the boundary conditions can be written
v1 ¼ 0; P
� 0
31 ¼ 0 on the ends;

P
� 0
33 ¼ u

� � rc
ov3
ox3

; P
� 0
13 ¼ �rc

ov3
ox1

on the sides:

9=
; ð73Þ
Substituting Eq. (35), (36) and (73) into Eq. (55), the boundary conditions on the sides can be expressed
v00 þ f2v ¼ 0;
ðl � sÞv000 � ð4l� � l � sÞf2v0 ¼ 0

�
on x3 ¼ �a3: ð74Þ
The symmetric modes satisfy Wðx1; x3Þ ¼ �Wðx1;�x3Þ based on odd functions vðx3Þ and the anti-sym-
metric modes satisfy Wðx1; x3Þ ¼ Wðx1;�x3Þ based on even functions vðx3Þ.

The general solution of Eq. (72) is given in the form
vðx3Þ ¼
X4

n¼1

Mn expðif� x3Þ; ð75Þ
where Mn are the real and/or complex constants. Substitution of Eq. (75) into Eq. (72) gives the following

characteristic equation that � satisfies it.
ðl � sÞ� 4 þ 2ð2l� � lÞ� 2 þ ðl þ sÞ ¼ 0: ð76Þ

This equation is the same form of Eq. (60) and its roots are classified into the elliptic complex (EC), elliptic

imaginary (EI), hyperbolic (H) or parabolic (P) regimes depending on the current state of stress and internal

variables. In each of these regimes, diffuse bifurcations are possible and, in fact, in each regime analysis can

be done leading to the appropriate eigenvalue equation. The evaluation of the eigenvalue equation is similar

to that for plane strain; Hill and Hutchinson (1975), where the results are summarized with considering

subloading surface model with tangential stress rate.

Elliptic complex regime:

The elliptic regime can be subdivided into portions where the roots are complex and imaginary. In the

elliptic complex region, the solution (75) for the symmetric modes has the form
vðx3Þ ¼ Re½M sinðf�x3Þ�; ð77Þ

where Re½ � denotes the real part of ½ �, M is a complex constant, and � ¼ p � iq are any complex roots of
Eq. (76) Similarly, the solution (75) for the anti-symmetric modes has the form
vðx3Þ ¼ Re½M cosðf� x3Þ�; ð78Þ
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Substituting Eqs. (77) and (78) into boundary conditions (74) leads to an eigenvalue equation of the form
q sinð2xpÞ
p sinhð2xqÞ ¼ �

l=s � 1

l=s þ 1

� �1=2

þ 2ðl�=s � 1Þ

l=s � 1

l=s þ 1

� �1=2

� 2ðl�=s � 1Þ
; ð79Þ
where x ¼ fa3 ¼ mpa3=2a1 is the wavelength, beside the ðþÞ sign applies for the symmetric modes, and the

ð�Þ sign applies for the anti-symmetric modes. For both the symmetric and anti-symmetric modes, the real

and imaginary parts, p and q satisfy the following equations.
p2 þ q2 ¼ l=s þ 1

l=s � 1

� �1=2

;

p2 � q2 ¼ 2l�=l � 1

s=l � 1
:

9>>>=
>>>;

ð80Þ
Elliptic imaginary regime:

In the elliptic imaginary regime, there are the symmetric modes of the form
vðx3Þ ¼ M sinhðfpx3Þ þ N sinhðfqx3Þ; ð81Þ
and the anti-symmetric modes are of the form
vðx3Þ ¼ M coshðfpx3Þ þ N coshðfqx3Þ; ð82Þ
where both M and N are the real constants now. p and q are positive and related to the coefficients of Eq.

(76). In the elliptic imaginary regime, the roots of Eq. (76) have the form �ip and �iq. The substitution of

Eq. (81) into the boundary conditions (74) yields the eigenvalue equation for the symmetric modes:
p tanhðxqÞ
q tanhðxpÞ ¼

p2 þ 1

q2 þ 1

� �2

: ð83Þ
Repeating this for the anti-symmetric modes (82) gives
p tanhðxpÞ
q tanhðxqÞ ¼

p2 þ 1

q2 þ 1

� �2

; ð84Þ
where p and q for both the symmetric and the anti-symmetric modes satisfy the following equations.
1

2
ðp2 þ q2Þ ¼ 2l�=l � 1

s=l � 1
;

1

2
ðp2 � q2Þ ¼ � ðð2l�=l � 1Þ2 þ ðs=lÞ2 � 1Þ1=2

s=l � 1
:

9>>=
>>; ð85Þ
Parabolic regime:

The general solution (75) for the symmetric modes in the parabolic regime has the form
vðx3Þ ¼ M sinðfpx3Þ þ N sinhðfqx3Þ ð86Þ
and for the anti-symmetric modes
vðx3Þ ¼ M cosðfpx3Þ þ N coshðfqx3Þ; ð87Þ

where p and iq the positive real and imaginary roots of Eq. (76). The substitution of Eqs. (86) and (87) into

the boundary conditions (74) yields the eigenvalue equation for the symmetric modes
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q tanðxpÞ
p tanhðxpÞ ¼

q2 þ 1

p2 � 1

� �2

ð88Þ
and for the anti-symmetric modes
q tanhðxqÞ
p tanðxpÞ ¼ � q2 þ 1

p2 � 1

� �2

; ð89Þ
where p and q for both the symmetric and the anti-symmetric modes satisfy the following equations.
1

2
ðp2 þ q2Þ ¼ � ðð2l�=l � 1Þ2 þ ðs=lÞ2 � 1Þ1=2

s=l � 1
;

1

2
ðp2 � q2Þ ¼ 2l�=l � 1

s=l � 1
:

9>>=
>>; ð90Þ
Hyperbolic regime:

In the hyperbolic regime, the appropriate symmetric modes are
vðx3Þ ¼ M sinðfpx3Þ þ N sinðfqx3Þ ð91Þ

and the appropriate anti-symmetric modes are
vðx3Þ ¼ M cosðfpx3Þ þ N cosðfqx3Þ; ð92Þ

where p and q are positive roots of Eq. (76). The substitution of Eqs. (91) and (92) into the boundary

conditions (74) yields the eigenvalue equation for the symmetric modes
q tanðxpÞ
p tanðxqÞ ¼ � q2 � 1

p2 � 1

� �2

ð93Þ
and for the anti-symmetric modes
q tanðxqÞ
p tanðxpÞ ¼ � q2 � 1

p2 � 1

� �2

; ð94Þ
where p and q for both the symmetric and anti-symmetric modes satisfy the following equations:
1

2
ðp2 þ q2Þ ¼ 2l�=l � 1

s=l � 1
;

1

2
ðp2 � q2Þ ¼ � ðð2l�=l � 1Þ2 þ ðs=lÞ2 � 1Þ1=2

s=l � 1
:

9>>=
>>; ð95Þ
Since the localized bifurcation can be seen in soil specimens and the diffuse bifurcation modes occur

before localization, it is meaningful to discuss geometrical diffuse modes. Although the diffuse bifurcation
modes are investigated in the hyperbolic and parabolic regimes mathematically on the assumption that the

localization takes place on the EC–H boundary, we discuss here only the diffuse modes in the elliptic regime.

Fig. 8 represents the bifurcation regimes as a function of the dimensionless variables s=2l� and l=2l� by

the dotted curves. The geometric diffuse bifurcation modes appear in the elliptic, hyperbolic and parabolic

regimes. The ðs=2l�; l=2l�Þ trajectories for several levels of material parameter a ranging from 0.0 to 1.5 in

the normal-yield state (a) R ¼ 1:0 and the subyield states (b) R ¼ 0:95 and (c) R ¼ 0:90 for uR ¼ 10 are also

depicted in Fig. 8. The trajectories pass through the elliptic complex, the elliptic imaginary, the hyperbolic

and the parabolic domains with the variation of parameter a. In the case of R ¼ 1:0 and R ¼ 0:95, i.e. near
the normal-yield state, the trajectories monotonically rise up to the EC–H boundary, while the larger



Fig. 8. The ðs=2l�; l=2l�Þ trajectories with the variation of the material parameter a in the normal-yield state (a) R ¼ 1:0 and the

subyield states (b) R ¼ 0:95 and (c) R ¼ 0:90 for uR ¼ 10.
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material parameter a makes it easier to pass through the boundary with the increase in v, since both s=2l�

and l=2l� become infinite as the denominator l� becomes zero with the increase in v, as shown in Fig. 5. In
the case of R ¼ 0:90, on the other hand, the ðs=2l�; l=2l�Þ trajectories first rise up with the increase in v, but
suddenly turn back to the origin, since l� does not become zero but inversely increases with the increase of

lower R, as shown in Fig. 5. Here, it should be noted for the case a ¼ 0, i.e. the original subloading surface

model without the tangential stress rate effect, the trajectory monotonically rises up and could be achieved

only for the instant l� ¼ 0.

Fig. 9 shows the lowest bifurcation stress as a function of the wavelength of the diffuse modes

x ¼ mpa3=2a1 obtained for the symmetric (Fig. 9 (a)) and the anti-symmetric (Fig. 9 (b)) elliptic complex

modes of bifurcation in several values 2l�=l. The ðs=2l�;xÞ trajectories for several levels of the normal-
yield ratio R ¼ 0:89, 0.90, 1.0 for uR ¼ 10 are depicted in Fig. 9. In the case of R ¼ 1:0 i.e. near the normal-

yield state, the trajectories rise up with the increase in x and then turn down, while in the case of subyield

states (R ¼ 0:89 and R ¼ 0:90) the trajectories rise up briefly.

We also consider here the long wavelength limit ðx ! 0Þ and the short wavelength limit ðx ! 1Þ of the
eigenvalue equation in EC and EI Regimes.

In the elliptic complex regime, noting that limx!0 q sinð2xpÞ=p sinhð2xqÞ ¼ 1 corresponding to the long

wavelength limit, the following equation is obtained from Eq. (79) for symmetric modes
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Fig. 9. Lowest bifurcation stress with the variation of 2l�=l for (a) the symmetric modes and (b) the anti-symmetric modes.
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s
2l� ¼ 1 ð96Þ
and for anti-symmetric models leads to s ! 0. Alternatively, sinð Þ can be written as the series represen-
tation, then for small values of x and the first two terms, Eq. (79) can be factored for the symmetric modes as
s
2l� ¼ 1þ 1

3
x2 s

2l�

�
� s

2l�

�
� 1

�
2l� � l
l � s

� ��
ð97Þ
and for anti-symmetric modes as
s
2l� ¼

1

3
x2 s

2l�

��
� 1

�
l þ s
l � s

� �
� s

2l�

� �
2l� � l
l� � s

� ��
: ð98Þ
In the short wavelength limit ðx ! 1Þ, noting that limx!1 q sinð2xpÞ=p sinhð2xqÞ ¼ 0, the following

equation is obtained from Eq. (79) for both the symmetric and anti-symmetric modes in the elliptic complex

regime.
s
2l� ¼ 1þ s

2l�
l � s
l þ s

� �1=2

: ð99Þ
The ðs=2l�; l=2l�Þ trajectories of the EC regime for the typical width to height ratios a3=a1 of
soil specimens used in experiments ranging from 0.4 to 0.6 for the symmetric modes and 0.4–1.0 for the
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anti-symmetric modes are depicted in Fig. 10(a) and (b), respectively. Taking into account that diffuse

bifurcation modes are observed experimentally for a3=a1 between 0.4 and 0.6 for the symmetric modes

(bulging) and between 0.4 and 1.0 for the anti-symmetric modes (buckling), it can be stated that the

wavelength x is near to the peak of the eigenstress by the numerical results (see Fig. 9). The ðs=2l�; l=2l�Þ
trajectories for the long wavelength limit ðx ! 0Þ Eq. (96) and the short wavelength limit ðx ! 1Þ Eq. (99)
for the symmetric modes are shown in Fig. 10(a) by the dashed line and curve, respectively.

When the elliptic imaginary regime for the long and short wavelength limit are considered, the eigen-

value equations (83) and (84) can be rewritten regarding to Eq. (85) as
Fig. 10

anti-sy
q tanhðxpÞ
p tanhðxqÞ ¼

ðs=2l� � 1Þq2 þ s=2l�

ðs=2l� � 1Þp2 þ s=2l� ; ð100Þ
for the symmetric modes
p tanhðxpÞ
q tanhðxqÞ ¼

ðs=2l� � 1Þp2 þ s=2l�

ðs=2l� � 1Þq2 þ s=2l� ; ð101Þ
for the anti-symmetric modes.

In the long wavelength limit for the EI regime, since limx!0 tanhðxpÞ= tanhðxqÞ ¼ p=q and p > q by

(85), the left sides of Eqs. (100) and (101) must be greater that one. Therefore, considering this condition for

the symmetric modes leading to
s
2l� > 1þ s

2l�
l � s
l þ s

� �1=2

ð102Þ
and for the anti-symmetric modes leading to
s
2l� < 1þ s

2l�
l � s
l þ s

� �1=2

: ð103Þ
In the short wavelength limit for the EI regime, noting that limx!0 tanhðxpÞ= tanhðxqÞ ¼ 1, Eq. (99) is

obtained from Eqs. (100) and (101) for both the symmetric and the anti-symmetric modes again. In fact, the
short wavelength limit is the interface between the regions that are defined in the long wavelength limit by

Eqs. (102) and (103).
. The ðs=2l�; l=2l�Þ trajectories with the variation of typical width to height ratios a3=a1 for (a) the symmetric modes and (b) the

mmetric modes.
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Fig. 11. Possible regions of diffuse bifurcation mode illustrated in the non-dimensional stress plane ðpr=F ; kr�j=F Þ for three levels of the
material parameter uR: (a) uR ¼ 1, (b) uR ¼ 10 and (c) uR ¼ 100.
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The regions in the stress space where the diffuse bifurcation modes of deformation can be induced are

depicted in Fig. 11 for the three levels of the material parameter: (a) uR ¼ 1, (b) uR ¼ 10 and (c) uR ¼ 100.

Since these regions are longer compared to the shear band regions in Fig. 7, it is induced and confirmed that
the diffuse modes trigger the pre-peak localization of deformation observed for soils experimentally.

Further, it is found that that the lower material parameter uR gives a wider region of stress for the geometric

diffuse formation, inducing the inelastic deformation from the lower value of R. It should be noted that the

diffuse bifurcation mode is formed for stress ratios lower than the critical state in the case of R ¼ 1, but it is

done even for stress ratios higher than the critical state in the case of R < 1, while the range of stresses

inducing the diffuse bifurcation mode is affected by the material parameter uR.
8. Concluding remarks

The bifurcations of a rectangular soil specimen subjected to plane strain loading under the undrained

conditions including both shear band modes and diffuse modes were analyzed incorporating the subloading

surface model with the tangential stress rate effect. The main results obtained are as follows:

ii(i) The analytical solutions for the inception of the localized bifurcation and the diffuse bifurcation modes

are derived, which are classified into the elliptic complex, elliptic imaginary and hyperbolic and para-
bolic regimes.

i(ii) The incorporation of the tangential-plastic strain rate has no influence on the instantaneous shear

moduli l�, but lowers the instantaneous shear moduli l.
(iii) The inclination angle of shear bands is predicted to increase by the tangential stress rate effect.
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(iv) The tangential-plastic strain rate term makes it easy to fulfill the necessary conditions of the formation

of the bifurcation for not only normal-yield, but also subyield states.

(v) The formation of the shear band and the diffuse bifurcation are affected markedly by the material

parameter R in the normal-yield ratio prescribing the approaching degree of stress to the normal-yield
state.
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