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Abstract

The tangential-subloading surface model can describe the normal-plastic strain rate due to the rate of stress inside
the yield surface and the tangential-plastic strain rate due to the stress rate component tangential to the subloading
surface. The localized and diffuse bifurcation modes of the rectangular soil specimen subjected to plane strain loading
under the undrained conditions are analyzed by adopting the tangential-subloading surface model, exhibiting the
characteristic regimes of the governing equations (elliptic, hyperbolic and parabolic) in this article. Further, the con-
ditions for shear band formation, shear band inclination, diffuse bifurcation modes, and the long and short wavelength
limit of diffuse modes are discussed in relation to material properties and the state of stress, i.e. the stress-ratio and the
normal-yield ratio. The tangential-plastic strain rate makes the inception of bifurcation modes easier in not only
normal-yield, but also subyield states.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Plastic instability phenomenon is an important problem in geomechanics in relation to the progressive
failure of geostructures. It is induced by material softening and geometrical nonlinearity and leads to the
bifurcation of deformation such as diffuse geometric modes (bulging and buckling) and localized modes
(shear band).

Localized and diffuse bifurcation modes of deformation, so-called shear band and, bulging or buckling,
respectively, in materials are widely observed when a deformation becomes large, approaching a failure.
The occurrence of localized and diffuse bifurcation modes is unavoidable even in the element test of a
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material specimen, even though every effort is made to prevent inhomogeneity of deformation. The for-
mation of localized and diffuse bifurcation modes can be regarded as bifurcation from a homogeneous
fundamental path that can hold only in an unstable manner, resulting in so-called material instability.

Various theoretical interpretations for the localized and diffuse bifurcation modes of deformation (Hill
and Hutchinson, 1975; Rudnicki and Rice, 1975; Young, 1976; Needleman, 1979; Vardoulakis, 1980, 1981;
Yatomi et al., 1989; Chau and Rudnicki, 1990; Bardet, 1991; lizuka et al., 1992; Papamichos and
Vardoulakis, 1995, etc.) have been attempted up to the present. Their results suggest a deficiency in the
traditional elastoplastic constitutive equations (cf. Schofield and Wroth, 1968; Bousshine et al., 2001; Peric
and Ayari, 2002) in which the plastic strain rate is independent of the stress rate component tangential to
the yield/loading surface, letting stress rate component tangential to the yield/loading surface and its
influence on the inelastic strain rate be called the tangential stress rate and the tangential stress rate effect.
The tangential stress rate effect has been experimentally measured by Ishihara and Towhata (1983), Miura
et al. (1986), Pradel et al. (1990) and Gutierrez et al. (1991) for soils.

As reviewed by Hashiguchi (1997) and Hashiguchi and Tsutsumi (2001), various elastoplastic consti-
tutive equations extended to describe the tangential stress rate effect have been proposed. Among them,
however, the model proposed by Hashiguchi and Tsutsumi (2001) is applicable to an arbitrary loading
process, including an unloading and a reloading process, fulfilling the mechanical requirements for con-
stitutive equations (Hashiguchi, 1993a,b, 1997), i.e. the continuity condition, the smoothness condition, the
Masing effect and the work rate-stiffness relaxation. It is formulated by introducing an additional strain
rate, named tangential-plastic strain rate, induced by the deviatoric tangential stress rate into the subloading
surface model (Hashiguchi and Ueno, 1977; Hashiguchi, 1980, 1989; Hashiguchi et al., 2002). It is of a
simple form of rate-linearity enabling a reciprocal expression, i.e. the analytical expression of strain rate in
terms of stress rate and its inverse expression, and keeps the symmetry of the stiffness modulus, thus leading
to convenient analyses of boundary value problems.

The present article extends the pervious bifurcation analyses of a rectangular specimen subjected to
plane strain loading by Hill and Hutchinson (1975), Young (1976), Needleman (1979), Vardoulakis (1981),
Chau and Rudnicki (1990), Hashiguchi and Khojastehpour (2003) to include subloading surface model
with tangential stress rate effect (Hashiguchi and Tsutsumi, 2001; Hashiguchi, in press) for soils. In this
article, the constitutive equation of soils will be first reviewed briefly, in which the material functions of soils
are incorporated into the subloading surface model with the tangential stress rate effect. This is applicable
to soils in not only normal-yield, but also subyield states, for not only lower but also higher stress ratio than
the critical state. Then, based on the constitutive equation, the localized and diffuse bifurcation modes of a
rectangular soil specimen subjected to plane strain loading under the undrained conditions are analyzed
and the characteristic regimes, elliptic, hyperbolic or parabolic, are identified depending on the state of
stress and material parameters. Further, the conditions for shear band formation, shear band inclination,
diffuse bifurcation modes, and the long and short wavelength limit of diffuse modes are discussed in relation
to the material properties and the state of stress.

2. Outline of the tangential-subloading surface model

Denoting the current configuration of the material particle as x and the current velocity as v, the velocity
gradient is described as L = 0v/0x, by which the strain rate and the continuum spin are defined as
D (= (L+L")/2) and W (= (L — L")/2), respectively, ( )" standing for the transpose.

Now let it be assumed that the strain rate D is additively decomposed into the elastic strain rate D® and
the inelastic strain rate D', i.e.

D =D°+D (1)
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where the elastic strain rate D is given by
D°=E'c. (2)

¢ is the Cauchy stress and (°) indicates the proper corotational rate with the objectivity and the fourth-order
tensor E is the elastic modulus. Further, let the inelastic strain rate D' be additively decomposed into the
normal-plastic strain rate DY and the tangential-plastic strain rate D} which are induced by the normal and
tangential stress rate components, respectively, to the subloading surface, called the normal and tangential
stress rates, respectively, i.e.

D' = D? 4 DP. 3)

Here, it is assumed that the tangential stress rate component inducing the tangential-plastic strain rate DY is
deviatoric stress, obeying the Rudnicki and Rice’s (1975) conclusion that “no vertex can result from
hydrostatic stress increments’ based on the consideration of the sliding mechanism in the fissure model. Let
D! and D} be formulated in this section.

Let it be postulated that the normal-plastic strain rate is given by the subloading surface model with the
smooth elastic-plastic transition (Hashiguchi, 1980). Now, this model will be reviewed briefly.

Assume the yield condition:

f(e) =F(H). (4)

The scalar H is the isotropic hardening/softening variable. Let it be assumed that the function f is
homogeneous to degree one in the tensor ¢ satisfying f(s6) = sf(6) for any nonnegative scalar s. Here,
assume that the evolution of the internal structure of materials is caused by the normal-plastic strain rate
D?, and thus the evolution equation of A is homogeneous to degree one in DY. Then, assume that it is linear
function of D?, i.e.

H = tr{f,(c, H)DP}, ()

where f), is the second-order tensor, (*) stands for the material-time derivative and tr( ) is the trace.

Hereafter, the elastoplastic constitutive equation will be formulated in the framework of unconventional
plasticity (Hashiguchi et al., 2002) as the extended plasticity theory such that the interior of the yield surface
is not a purely elastic domain, but a plastic deformation is induced by the rate of stress inside the yield
surface. Thus, the conventional yield surface is renamed as the normal-yield surface, since its interior is not
regarded as a purely elastic domain in the present model.

Now, let the subloading surface be introduced, which always passes through the current stress point ¢
and also keeps the similar shape and the configuration of similarity to the normal-yield surface with respect
to the origin of stress space, i.e. 6 = 0. The approaching degree to the normal-yield state can be described
by the ratio of the size of the subloading surface to that of the normal-yield surface, i.e. the similarity-ratio
R of these surfaces, while R = 0 corresponds to the most elastic state in which the stress coincides with the
similarity-center and R = 1 to the normal-yield state in which the stress exists on the normal-yield surface.
Hereinafter, the similarity-ratio R is called the normal-yield ratio. Then, the subloading surface is described
as

f(e) = RF(H). (6)

The normal-yield and subloading surfaces are illustrated in Fig. 1, where 6, (= 6/R) on the normal-yield
surface is the conjugate stress of the current stress ¢ on the subloading surface.

It is observed from experiments that the stress asymptotically approaches the normal-yield surface in the
plastic loading process D? # 0. Thus, the following evolution equation of the normal-yield ratio R be as-
sumed.
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Fig. 1. Normal-yield and subloading surfaces.

R=U|D?| for D £ 0. (7)
Here, || || stands for the magnitude and U is the monotonically decreasing function of the normal-yield
ratio R, satisfying

oo for R=0,
U—{O for R—1. (U<0 forR>1), (8)

where the fact that the stress increases without a plastic strain rate at the most elastic state R =0 is
incorporated. The function U satisfying Eq. (8) be simply given by

U= —uzlnR, 9)

where u is a material constant prescribing the approaching rate of the current stress to the normal-yield
surface with a plastic deformation.
Assuming the associated flow rule:

DP = IN(/ > 0), (10)
where
= ”](\2)&), (11)
n=2 YD gy -, (12)
MP = (I;h—&—%)tr(No), (13)

where MP is called normal-plasticmodulus and h is a function of the stress, plastic internal variables and N in
degree one, which is related to H as

H

A‘ )

since the rates of internal variables include 4 in degree one.
The normal-plastic strain rate (10) with Egs. (11) and (13) is obtained by substituting the associated flow

rule (10) into the extended consistency condition obtained by incorporating the evolution rule (7) of the

normal-yield ratio R into the time-differentiation of Eq. (6) for the subloading surface. Then, the plastic

h = tr(f,N) = (14)
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loading process develops gradually as the stress approaches the normal-yield surface, exhibiting a smooth
elastic—plastic transition. Thus, the subloading surface model fulfills the smoothness condition (Hashiguchi,
1993b, 1997, 2000).

Noting that the tangential-plastic strain rate DY, as well as the normal-plastic strain rate D?, would not
be induced in the state R = 0, but would be gradually induced as the stress approaches the normal-yield
surface, let the tangential-plastic strain rate DY be formulated as

D! = —g7, (15)

where M! is a monotonically decreasing function of R satisfying the following conditions.

» {oo for R =0,

ME = T forR=1. (16)

T being a material function of the stress and the plastic internal variables in general. The function M?,
called the tangential-plastic modulus, satisfying Eq. (16) is simply given by
MP =TR, (17)

where b (>1) is a material constant. The second-order tensor é;‘ is given as follows:

o

6" -6, o =tr(n‘e’)n’, (18)

o
*
Gt

(/%)

( )" stands for the deviatoric part and n* is the normalized deviatoric outward-normal tensor of the sub-
loading surface. The stress rate o- is called the deviatoric tangential stress rate fulfilling

("] = 1). (19)

tr(Ne?) =0, tr(c’) = 0. (20)

The deviatoric tangential stress rate 3‘2‘ in the principal stress space is directed toward the tangential line
of the closed curve formed by the intersection of the subloading surface and deviatoric stress plane as
111ustrated in Fig. 2. The tangential-plastic strain rate D} is related linearly to the deviatoric-tangential stress
rate 6 through the similarity-ratio R so as to exhibit the smooth elastic—inelastic transition. Besides, it can
be formulated so as to be hardly induced when a stress lies inside the normal-yield surface by giving a large
value to the material parameter b.

The strain rate D is given as

No 1o
uNo) o L g (21)

D=E'o+
M? MP

Now, let the elastic modulus tensor E be given by the Hooke’s type as
2
Eiju = <K 3 G> 0;;0k + G(éikéjl + 5[15jk)7 (22)

where K and G are the elastic bulk and shear moduli, respectively, which are functions of the stress and
internal state variables in general and ¢;; is the Kronecker’s delta. The inverse expression of Eq. (21) is given
as



5546 M. Khojastehpour, K. Hashiguchi | International Journal of Solids and Structures 41 (2004) 5541-5563

Hydrostatic axis

Loading surface

Deviatoric stress plane

_O-Z

Closed curve formed by
intersection of loading surface
and deviatoric stress plane

_o'l

Fig. 2. The deviatoric tangential stress rate 8': illustrated in the principal stress space.

o M tr(NED) 26,
° M +2G M+ u(NEN) | PN g (W EN)” + S tr(EN)T)
2G 1
+ — (tr(n"ED)n" 4 ~tr(ED)I)|. 23)
M; 3

The positive proportionality factor in the associated flow rule is expressed in terms of the strain rate D,
rewriting 1 by A, as follows:
tr(NED)

~ 3T GNEN) .

because of tr(NEéf) =0 for Eq. (22). Then, let the loading criterion be given by the positiveness of the
proportionality factor A as follows (Hashiguchi, 2000):

DP#£0:4>0,
DPO;Ago.} (25)

3. Material functions for soils

The particular forms of the material functions for soils are given in this section. We focus our attention
on the behavior of saturated soils, and then let the Cauchy stress tensor ¢ be meant the effective Cauchy
stress, excluding a pore pressure u from the total Cauchy stress T, which is defined by

6=T+ul (26)

where u as well as pressure p, (= —o,) is taken to be positive for compression.
The subloading surface for simple isotropic soils is given as follows:

f(6) =p,(1+ 1), (27)
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where
1
paz—gtro', XE%, (28)
nEG—, ¢ =0+ p,l (29)
Do

m, is the material constant describing the stress ratio ||y|| in the critical state line.
The isotropic hardening/softening function F is given by

H
F=Fex , 30
’ p(P—V) (30)

where Fj is the initial value of F. p and y are material constants describing the slope of the normal con-
solidated curve and the swelling curve, respectively, in the (In ¥, 1n P) plane (V: volume, P: pressure). The
evolution equation of the isotropic hardening variable H is given by

H = —tr(DP). (31)

Further, we assume the function T in the tangential-plastic modulus M{ of Eq. (17) as

r_ P

ay
a and ¢ are material constants. Then, the tangential-plastic modulus M in Eq. (15) with Egs. (17) and (32)
is formulated to induce the tangential stress rate effect gradually with the increase in y and/or R, whilst the
effect decreases with the increase in pressure. On the other hand, the equation of Yatomi et al. (1989) for the
tangential-plastic modulus, i.e. MY = C(m, — ||n||)p, (C: material constant) is applicable only to the normal-
yield state R = 1 under a lower stress ratio than that in the critical state, i.e. y < 1.

The bulk and shear moduli are given as
Ps

. G- 3(1—2v) ,
y 2(1+v)
where v is Poisson’s ratio.

The concrete form of the normal-plastic modulus in Eq. (13) for isotropic soils is described from Egs.
(27)-(30) as follows:

, (32)

(33)

2
ME-(—MRIHR+ fql ﬁx>iﬁ,
PX /2 VEWAVS (34)
— 2

Hereafter, the material constants are chosen as p = 0.0924, y = 0.0168, m. = 1.17, b = 1.0, ¢ = 3.0 and
v = 0.333.

4. Constitutive relations
Consider a soil specimen in the shape of a rectangular and homogeneous block under the plane strain

deformations subjected to continuing biaxial loading of homogeneous normal stress in the (x;,x3) plane as
the current axial compressive stress o on the frictionless ends and the lateral compressive stress ¢33 on the
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sides, which starts from an isotropically consolidated state (see Fig. 3). At the onset of deformation, we
suppose the specimen undergoes a finite homogenous deformation and the pore water pressure maintains
homogeneous. Furthermore, the deformed specimen preserves a rectangular shape with the current
dimensions 2a; x 2a; at the onset of bifurcation. The shear band, symmetric and anti-symmetric modes
may be induced as shown in Fig. 3. Considering the constitutive relationship (23), it holds that

a1 — 033 = 2u°(Dyy — D33), (35)
031 = 2uDsy,

with
D1+ D33 =0, Dyy=Dy=Dy;=0. (36)

w* and u which are the instantaneous shear moduli for the normal effective stress difference o; — 033 and for
shear stress a3;, respectively are derived as follows (Hashiguchi and Tsutsumi, 2003):

M*
=02 (<G6), 37
W= G (<0) (37)
Mf
=G———-(<G), 38
# M{’+2G( G) (38)
where
T K 2\2 e 1 2 272
My=MP+=(1=7), My=MP+-(K-3G)(1-7)+2G. (39)
) )

Further, for biaxial loading under the undrained plane strain conditions starting from the isotropic-
consolidation state, the following simple relationship can be obtained.

1
o-ll

22002,

>
AAAAARA)

TYYIIYY
IS

FARAAA

Fig. 3. (a) The boundary stresses at the onset of bifurcation and the geometric configuration. (b) The localized bifurcation mode (shear
band) and the diffuse bifurcation modes (bulging and buckling).
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Fig. 4. Relationships of the instantaneous shear moduli vs. the variable y with the variation of the material parameter a in the normal-
yield state (R = 1).
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The instantaneous shear modulus p* in Eq. (37) is independent of the tangential-plastic strain rate and
gradually decreases from the elastic shear modulus G as y and R increase, as shown in Fig. 4, for the
normal-yield state R = 1 and in Fig. 5 for uz = 10, whilst it increases inversely in the regime far denser than

1.0

\R=00 (elastic)
0.2
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. 06}
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Fig. 5. Relationships of the instantaneous shear moduli vs. the variable y with the variation of the normal-yield ratio R for uz = 10 and
a=0.02.
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critical state (x > 1 and M? < 0). Note that u* is slightly negative near the normal-yield state and just over
the critical state.

The instantaneous shear modulus p in Eq. (38) decreases monotonically with the increase in the value of
the material parameter ¢ and with the increase in the variables y and R, as shown in Figs. 4 and 5.

The feature of the present formulation where the tangential-plastic strain rate, as well as the normal-
plastic strain rate, is induced gradually as the stress approaches the normal-yield surface, i.e. as R — 1,
fulfilling both the continuity and smoothness conditions is shown in Figs. 4 and 5. On the other hand, in
conventional plasticity models with @ = 0, ¢* and u suddenly jump from the purely elastic response to the
normal-yield response at the moment when the stress reaches the normal-yield surface.

5. Governing equations

At the current time ¢, let the body be bounded by closed surface s and let t denote the surface traction
vector. Then, it is required to satisfy

/Stds:() (41)

for equilibrium without the body force. Using the divergence theorem and the relation t = Tn (n: the
outward unit normal to the surface s), we obtain the equilibrium equation

divT =0. (42)
Noting that (ds)* = (tr D — n - Dn)ds, the differentiation of Eq. (41) with respect to time is given by
[ fdas=o. (43)

where 7t = t + (trD — n. Dn)t is called the rotal nominal traction rate. Further, the total nominal (first Piola—
Kirchhoff) stress rate 1 defined by n = In is related to the rotal Cauchy stress rate T by
=T+ (trD)T — TL", (44)

Since the stress rates T and ¢ are not invariant under rigid rotation, let the corresponding Jaumann rate
be introduced as the objective corotational rates:

T=T+TW — WT, (45)
6=06+6W—Wo. (46)
Substituting Eqgs. (45) and (46) to Eq. (44) with Eq. (26), the total nominal stress rate 1:[ can be rewritten as
=T+ (trD)T — TD + WT = IT — il — u(tr D)I + uL", (47)
where
m=6+ (trD)e — oD + We. (48)

m is called the effective nominal stress rate (Yatomi et al., 1989).
Using the divergence theorem in Eq. (43), the equilibrium equation is obtained as

divIl — gradu = 0. (49)
for gradu = 0.
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For the plane strain deformation, the rate of deformation tensor D and the spin tensor W are given by

W ()
_ axl 2 6x3 axl
Pl oy 0
2 6x3 6x1 a)C'3
0 (o)
_ 2 6x3 axl
W= BV . . (51)
2 6x3 6)C1

In addition, using the relationships between the Jaumann rate and the material time rate of Cauchy stress,

Eq. (46), and between the effective nominal stress rate I and the Jaumann rate of Cauchy stress ¢, Eq. (48),
the following equations are obtained, respectively:

. L] avl 61)3
g11 o3+ 7T §—§
o 3 1
T e 5 | >
3 aX3 6x1 33
S’ o 61)1 8’ T@vl 0_603
]:[, _ 11 11 axl 13 ax3 axl (53)
o3 — a% + ‘c% 03— 0 % 7
31 6x3 axl 33 33 6x3
where
1 1
025(0'114-0'33), 125(011_033)~ (54)

Let the bifurcation condition in the biaxial compressive loading under the undrained condition be
analyzed, as established by Hill and Hutchinson (1975) for plastically-incompressible metals and followed
by Young (1976), Needleman (1979), Vardoulakis (1981), Chau and Rudnicki (1990) and Bardet (1991).
Consider a pure homogeneous deformation process which starts from an isotropically consolidated state
and proceeds up to the instant of the bifurcation phenomena, where the principal stress axes coincide with
the directions of the coordinate axes x; and x;. On the ends (x; = £ay),the specimen is loaded by a com-
pressive velocity with no shear traction and on the side (x; = +a3), a constant lateral hydrostatic pressure.
Using Eq. (49) for continuing linear equilibrium, the total nominal stress rate must satisfy

’ ® .
ol on ou
11 + 13

ay A A (55)
oLy oMy i
6x3 @xl 6x3 e
Eq. (55) can be written as follows:
a ® ® 6 ® a . a ® ®
a_xl(H“ — 1) +26_x3H13 o zaxl “= _6_x1(H“ + I13;),
(56)
a e/ e/ a ® a . L .,
6_x3<n“ — 1) - 26_x1H“ + 26_x3u = G_(HH + I3;).
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Differentiating and combining the two relationships in Eq. (56) to eliminate 1.7 /11 + 1.7 /33, the resulting can be
expressed in terms of the derivatives of velocities using Eq. (53). Then, introduce the stream function
¥ (x1,x3)(Hill and Hutchinson, 1975) leading to

oy oY

U]Za—x3, U3:a—XI. (57)
The substitution of Egs. (53) and (57) into Eq. (56) with constitutive relations (35) leads to
o*y 4 ot
— 1) =+ 202U — u) —— —=0. 5

Eq. (58) is a fourth order partial differential equation of the mixed type that can be elliptic, hyperbolic or
parabolic, depending on the current state of stress and internal variables. The particular linearization
described here yields a governing equation by applying subloading surface model with tangential stress rate
effect.

6. Localized bifurcation and classification of regimes

The condition of shear band formation at the onset of strain localization in the biaxial compressive
loading under the undrained conditions is analyzed briefly in this section. The unit vector normal to a shear
band is denoted by n(n;,n3) (see Fig. 3). The stream function ¥(x;,x3), which represents a simple shear
parallel to planes nix; 4+ n3x; = const., is given by

Y = 'I’(nlxl + n3X3). (59)
The substitution of Eq. (59) into (58) gives a fourth order algebraic characteristic equation as follows:
(k= O)n + 220" — wynims + (u+7)nf = 0. (60)

The condition for the formation of shear band is given as a loss of ellipticity of Eq. (60), whilst the
solutions of n3/n; in Eq. (60) are classified into the elliptic complex (EC) and imaginary (EI), parabolic (P)
and hyperbolic (H) regimes, according to the existence of zero, two, and four real roots for (60), respec-
tively. The classifications of the regimes, under the restrictions u* > 0, u > 0 and t > 0, are as follows:

Elliptic complex regime:

w1/ )\ 1
- - 1
2u*>2<2u*> 3 (61)

Elliptic imaginary regime:

2
u 1/ = 1
= = 2u* . 62
2u*<2<2u*> ta o m>T 20 >p (62)
Parabolic regime:
u<rt. (63)

Hyperbolic regime:

2
u 1/ 1 .
_ 4 2 . 64
2u*<2<2,u*> BT A< H (64)
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The boundaries between the characteristic regimes are classified as follows:

Elliptic complex—elliptic imaginary boundary:

2 >,

(E> = i(zﬂ*_”>l/2 i= VoI (65)
1234 7

n

Elliptic complex—hyperbolic boundary:
u <,

(@> :i(_zu*u)‘”. (66)
/1234 H—=1

Elliptic—parabolic boundary:

2 >,

. 12
(2).=0 (2).-=(%=) “
n /12 n /34 p=r

Hyperbolic-parabolic boundary:

2 < s
(2).0 (2),.-=(—5=) “
niJy, n /34 H—T

Let it be assumed that the shear band will be formed at the instant when the (t/2p*, u/2u*) trajectory
passes through the EC-H boundary. Then, the inclination angle ¢ of shear band, i.e. the angle measured in
anti-clockwise direction from the maximum principal stress (1) direction to the direction of shear band
(the direction normal to shear band) is given from Eq. (60) as

o —
¢ =tan"! <n3> —tan !, [~ LK (69)
n -1

Here, note that when the trajectory directly passes though the E-P boundary (p = 1t,2u* > p) n; =0 is
derived from Eq. (60), and thus the direction of the shear band is unrealistically predicted perpendicular to
the maximum principal stress direction, i.e. ¢ = 1t/2. Therefore, one would have only to consider the EC-H
boundary for shear band formation.

The relationships between the inclination angle ¢ of shear band vs. t/2u* for several levels of material
parameter a ranging from 0.1 to 0.55 are obtained from Eq. (69) and depicted in Fig. 6. The angle ¢ in-
creases for a bigger material parameter a. In cases of a larger material parameter a, the inclination angle ¢
is predicted unrealistically as ¢ > m/2 since the trajectories directly pass though the E-P boundary.

The regions in the stress space where the shear band can be induced are depicted in Fig. 7 for three levels
of the material parameter: (a) uz = 1, (b) uz = 10 and (c) uz = 100. It is found that the lower material
parameter up gives a wider region of stress for the shear band formation, inducing inelastic deforma-
tion from the lower value of R. It should be noted that the shear band is formed for a stress ratio lower
than the critical state in the case of R = 1, but it is done even for stress ratios higher than the critical state
in the case of R < 1, while the range of the stress inducing the shear band is affected by the material
parameter ug.
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Fig. 6. Relationships of shear band inclination angle ¢ vs. t/2u* with the variation of material parameter a.
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material parameter ug: (a) uzx = 1, (b) ux = 10 and (c) uz = 100.

7. Diffuse bifurcation modes and classification of regimes
In this section, we investigate the possibility of diffuse bifurcations, which precedes localization, for a

rectangular soil specimen with the dimensions 2a; x 2aj at the onset of bifurcation (see Fig. 3). We examine
the possibility of incremental deformation when the ends are subject to a current axial stress o;; and the
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sides subject to a constant hydrostatic confining pressure o;; = o.. The stream function ¥(x,x;), which
represents the diffuse bifurcation modes is given by

Y (x1,x3) = v(x3) cos({xy), (70)
where { = mn/2a;, m = 1,2,3,.... The substitution of Eq. (70) into Eq. (57) leads to
v; = V' (x3) cos({xy),
X 71
v3 = {o(x;) sin({xy), (71)

where v = dv;/dx;. Here, as in Hill and Hutchinson (1975), the origin of coordinates is at the rectangular
specimen center when m is odd and at a distance a;/m from the center when m is even. Substituting of the
eigenmode (71) into Eq. (58), the following governing differential equation is obtained for v(x3).

(u— 0" = 220" = " + (u+ 1) 'v = 0. (72)
Noting that Eq. (47), the boundary conditions can be written

®/

v =0, II;;=0 on the ends, 7

LN 0 ./ 0 .

Iy, =u— aca—zz, 3= —aca—z‘: on the sides. 73)
Substituting Eq. (35), (36) and (73) into Eq. (55), the boundary conditions on the sides can be expressed

V' +Co=0

’ = +a;. 74

(=" = (4 — =)0 = on = S 74)

The symmetric modes satisfy ¥(xj,x;) = —¥(x;, —x3) based on odd functions v(x;) and the anti-sym-

metric modes satisfy ¥(x;,x;) = ¥(x;, —x3) based on even functions v(x3).
The general solution of Eq. (72) is given in the form

4
v(x3) = > My exp(ilTxs), (75)
n=1
where M, are the real and/or complex constants. Substitution of Eq. (75) into Eq. (72) gives the following
characteristic equation that 7" satisfies it.

(u—0)Y* +202u — WY+ (u+1) =0. (76)

This equation is the same form of Eq. (60) and its roots are classified into the elliptic complex (EC), elliptic
imaginary (EI), hyperbolic (H) or parabolic (P) regimes depending on the current state of stress and internal
variables. In each of these regimes, diffuse bifurcations are possible and, in fact, in each regime analysis can
be done leading to the appropriate eigenvalue equation. The evaluation of the eigenvalue equation is similar
to that for plane strain; Hill and Hutchinson (1975), where the results are summarized with considering
subloading surface model with tangential stress rate.

Elliptic complex regime:
The elliptic regime can be subdivided into portions where the roots are complex and imaginary. In the
elliptic complex region, the solution (75) for the symmetric modes has the form

v(x;) = Re[M sin({Tx3)], (77)

where Re[ | denotes the real part of [ ], M is a complex constant, and 7" = p & ig are any complex roots of
Eq. (76) Similarly, the solution (75) for the anti-symmetric modes has the form

v(x3) = Re[M cos({Tx3)], (78)
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Substituting Eqs. (77) and (78) into boundary conditions (74) leads to an eigenvalue equation of the form

(”“*)m+ﬂwﬁu

g sin(2wp) _ 4 u/t+1 7 (79)

psinh(2wq) (zﬁ; i)l/z o fr—1)

where o = {a; = mmas/2a, is the wavelength, beside the (+) sign applies for the symmetric modes, and the
(—) sign applies for the anti-symmetric modes. For both the symmetric and anti-symmetric modes, the real
and imaginary parts, p and ¢ satisfy the following equations.

1/2
5o, (u/t+1
pre= (/«t/f—1> ’
pz_ 2:2:“*/:“_1
tfu—1"
Elliptic imaginary regime:
In the elliptic imaginary regime, there are the symmetric modes of the form
v(x3) = M sinh({px;) + N sinh({gx3), (81)

(80)

and the anti-symmetric modes are of the form
v(x3) = M cosh({px;) + N cosh({gx3), (82)

where both M and N are the real constants now. p and ¢ are positive and related to the coefficients of Eq.
(76). In the elliptic imaginary regime, the roots of Eq. (76) have the form +ip and +ig. The substitution of
Eq. (81) into the boundary conditions (74) yields the eigenvalue equation for the symmetric modes:

ptanh(wg) _ P +1 ? (83)
g tanh(wp) ¢+1)"
Repeating this for the anti-symmetric modes (82) gives
2
ptanh(wp) _ pP+1 (84)
g tanh(wgq) ¢+1)’
where p and ¢ for both the symmetric and the anti-symmetric modes satisfy the following equations.
1 2 fu—1
J ) =2
85
U gy - Q= 1 el = 1) (%)
2 t/p—1

Parabolic regime:
The general solution (75) for the symmetric modes in the parabolic regime has the form

v(x3) = M sin({px;) + N sinh({gx3) (86)
and for the anti-symmetric modes
v(x3) = M cos({px;) + N cosh({gx3), (87)

where p and ig the positive real and imaginary roots of Eq. (76). The substitution of Egs. (86) and (87) into
the boundary conditions (74) yields the eigenvalue equation for the symmetric modes
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gtan(wp)  [(¢*+1 2 (88)
ptanh(wp)  \p?—1

and for the anti-symmetric modes
gtanh(og) (¢’ +1 ? (89)
ptan(op) — \p?P—1)"°

where p and ¢ for both the symmetric and the anti-symmetric modes satisfy the following equations.

Loy (@/p= D+ (/)= 1)
50+ ) = i ’ .
Lo oy _2w/p—1

Hyperbolic regime:
In the hyperbolic regime, the appropriate symmetric modes are

v(x3) = M sin({px;) + N sin({gx3) 91)
and the appropriate anti-symmetric modes are
v(x3) = M cos({px;) + N cos({gx3), (92)

where p and ¢ are positive roots of Eq. (76). The substitution of Egs. (91) and (92) into the boundary
conditions (74) yields the eigenvalue equation for the symmetric modes

2
ptan(wq) p?—1
and for the anti-symmetric modes
gtan(owg) (¢ —1Y’ (94)
ptan(wp) -1/’
where p and ¢ for both the symmetric and anti-symmetric modes satisfy the following equations:
1 20 fu—1
S = L7
2 t/u—1 (95)
Lo oy (@ fn= 1)+ (t/w)’ - 1)'?
2 t/u—1 ’

Since the localized bifurcation can be seen in soil specimens and the diffuse bifurcation modes occur
before localization, it is meaningful to discuss geometrical diffuse modes. Although the diffuse bifurcation
modes are investigated in the hyperbolic and parabolic regimes mathematically on the assumption that the
localization takes place on the EC-H boundary, we discuss here only the diffuse modes in the elliptic regime.

Fig. 8 represents the bifurcation regimes as a function of the dimensionless variables t/2u* and p/2u* by
the dotted curves. The geometric diffuse bifurcation modes appear in the elliptic, hyperbolic and parabolic
regimes. The (t/2u*, u/2u*) trajectories for several levels of material parameter a ranging from 0.0 to 1.5 in
the normal-yield state (a) R = 1.0 and the subyield states (b) R = 0.95 and (c) R = 0.90 for uz = 10 are also
depicted in Fig. 8. The trajectories pass through the elliptic complex, the elliptic imaginary, the hyperbolic
and the parabolic domains with the variation of parameter a. In the case of R = 1.0 and R = 0.95, i.e. near
the normal-yield state, the trajectories monotonically rise up to the EC-H boundary, while the larger
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(a) T/ 2% (b) /2"

Fig. 8. The (t/2u*, u/2u") trajectories with the variation of the material parameter a in the normal-yield state (a) R = 1.0 and the
subyield states (b) R = 0.95 and (¢) R = 0.90 for uz = 10.

material parameter a makes it easier to pass through the boundary with the increase in y, since both 7/2u*
and u/2p* become infinite as the denominator y* becomes zero with the increase in y, as shown in Fig. 5. In
the case of R = 0.90, on the other hand, the (t/2u*, 1t/2u*) trajectories first rise up with the increase in y, but
suddenly turn back to the origin, since u* does not become zero but inversely increases with the increase of
lower R, as shown in Fig. 5. Here, it should be noted for the case a = 0, i.e. the original subloading surface
model without the tangential stress rate effect, the trajectory monotonically rises up and could be achieved
only for the instant y* = 0.

Fig. 9 shows the lowest bifurcation stress as a function of the wavelength of the diffuse modes
® = mmas/2a, obtained for the symmetric (Fig. 9 (a)) and the anti-symmetric (Fig. 9 (b)) elliptic complex
modes of bifurcation in several values 2u*/u. The (t/2u*, ®) trajectories for several levels of the normal-
yield ratio R = 0.89, 0.90, 1.0 for uz = 10 are depicted in Fig. 9. In the case of R = 1.0 i.e. near the normal-
yield state, the trajectories rise up with the increase in @ and then turn down, while in the case of subyield
states (R = 0.89 and R = 0.90) the trajectories rise up briefly.

We also consider here the long wavelength limit (w — 0) and the short wavelength limit (w — oo) of the
eigenvalue equation in EC and EI Regimes.

In the elliptic complex regime, noting that lim,, ¢ ¢ sin(2wp)/psinh(2wg) = 1 corresponding to the long
wavelength limit, the following equation is obtained from Eq. (79) for symmetric modes



M. Khojastehpour, K. Hashiguchi | International Journal of Solids and Structures 41 (2004) 5541-5563 5559

(@
10 -
8t H ?:.". :
B4 fool
6| : 3
T i
* E
I
2t E
0 .ﬂ‘é' : : .
0 2 4 6 8 10
w

Fig. 9. Lowest bifurcation stress with the variation of 2u*/u for (a) the symmetric modes and (b) the anti-symmetric modes.

T
2u (96)
and for anti-symmetric models leads to t — 0. Alternatively, sin( ) can be written as the series represen-
tation, then for small values of w and the first two terms, Eq. (79) can be factored for the symmetric modes as
T 1 T T 20—
=l+-0’ - -1 97
2w +3w[2u* <2u* ><u—r )} &7
and for anti-symmetric modes as
(98)

T lwz T 1 n+T T 20— 1
2ut 3 2u* U—t 2u* w—t )|

In the short wavelength limit (w — oo), noting that lim,,_., ¢ sin(2wp)/psinh(2wg) = 0, the following
equation is obtained from Eq. (79) for both the symmetric and anti-symmetric modes in the elliptic complex

regime.
T v (n—1\'"*
=1+ .
2 2 (u + f)
The (t/2u*,u/2u*) trajectories of the EC regime for the typical width to height ratios a3/a; of
soil specimens used in experiments ranging from 0.4 to 0.6 for the symmetric modes and 0.4-1.0 for the

(99)
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anti-symmetric modes are depicted in Fig. 10(a) and (b), respectively. Taking into account that diffuse
bifurcation modes are observed experimentally for a;/a; between 0.4 and 0.6 for the symmetric modes
(bulging) and between 0.4 and 1.0 for the anti-symmetric modes (buckling), it can be stated that the
wavelength o is near to the peak of the eigenstress by the numerical results (see Fig. 9). The (t/2u*, u/2u*)
trajectories for the long wavelength limit (w — 0) Eq. (96) and the short wavelength limit (o — o) Eq. (99)
for the symmetric modes are shown in Fig. 10(a) by the dashed line and curve, respectively.

When the elliptic imaginary regime for the long and short wavelength limit are considered, the eigen-
value equations (83) and (84) can be rewritten regarding to Eq. (85) as

gtanh(wp)  (t1/2u" — 1)¢* + /21

= 100
pranh(og) (¢ — g + o2 (100)

for the symmetric modes
ptanh(wp) (/20" — 1)p* + /20" (101)

qtanh(wg)  (¢/2u" —1)g* + /2’

for the anti-symmetric modes.

In the long wavelength limit for the EI regime, since lim,, ., tanh(wp)/tanh(wq) = p/q and p > g by
(85), the left sides of Egs. (100) and (101) must be greater that one. Therefore, considering this condition for
the symmetric modes leading to

1/2
T T (u—1
>14+ 102
2 2p <u + T) (102)
and for the anti-symmetric modes leading to
T T (u—1 12
<1+ . 103
2 2pr <u + f) (103)

In the short wavelength limit for the EI regime, noting that lim,, ., tanh(wp)/tanh(wg) = 1, Eq. (99) is
obtained from Eqgs. (100) and (101) for both the symmetric and the anti-symmetric modes again. In fact, the
short wavelength limit is the interface between the regions that are defined in the long wavelength limit by
Egs. (102) and (103).

5 5 -
4 4} EC H
a,/a= g
3 3F 1.0 i .
. )z 09 4
* * .
2 ST P
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0.4
1 1
..;;‘.:'
. o LBl
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(a) T/2u* (b) T/214*

Fig. 10. The (t/2u*, u/2p*) trajectories with the variation of typical width to height ratios as/a; for (a) the symmetric modes and (b) the
anti-symmetric modes.



M. Khojastehpour, K. Hashiguchi | International Journal of Solids and Structures 41 (2004) 5541-5563 5561

08 - 08 ~
Critical State Critical State
0.6 | : 0.6 | -
* *
lo*ll | lo*ll |
F F
o2/ o2t/ /"
0.0 o . 1 . 1 0.0 ol . 1 . 1
0.0 0.2 04 0.6 0.8 1.0 12 0.0 0.2 0.4 0.6 0.8 1.0 12
©) P/ F (b) P/ F
0.8 ~
Critical State
0.6 | -
* ’
lo*ll o4l f
F
o2ty -
'I
/'
ook 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2
(© Ps/F

Fig. 11. Possible regions of diffuse bifurcation mode illustrated in the non-dimensional stress plane (p,/F, ||6*|/F) for three levels of the
material parameter ug: (a) uz = 1, (b) ux = 10 and (c) uz = 100.

The regions in the stress space where the diffuse bifurcation modes of deformation can be induced are
depicted in Fig. 11 for the three levels of the material parameter: (a) uz = 1, (b) uz = 10 and (c) uz = 100.
Since these regions are longer compared to the shear band regions in Fig. 7, it is induced and confirmed that
the diffuse modes trigger the pre-peak localization of deformation observed for soils experimentally.
Further, it is found that that the lower material parameter u; gives a wider region of stress for the geometric
diffuse formation, inducing the inelastic deformation from the lower value of R. It should be noted that the
diffuse bifurcation mode is formed for stress ratios lower than the critical state in the case of R = 1, but it is
done even for stress ratios higher than the critical state in the case of R < 1, while the range of stresses
inducing the diffuse bifurcation mode is affected by the material parameter ug.

8. Concluding remarks

The bifurcations of a rectangular soil specimen subjected to plane strain loading under the undrained
conditions including both shear band modes and diffuse modes were analyzed incorporating the subloading
surface model with the tangential stress rate effect. The main results obtained are as follows:

(1) The analytical solutions for the inception of the localized bifurcation and the diffuse bifurcation modes
are derived, which are classified into the elliptic complex, elliptic imaginary and hyperbolic and para-
bolic regimes.

(i) The incorporation of the tangential-plastic strain rate has no influence on the instantaneous shear
moduli y*, but lowers the instantaneous shear moduli p.

(ii1) The inclination angle of shear bands is predicted to increase by the tangential stress rate effect.
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(iv) The tangential-plastic strain rate term makes it easy to fulfill the necessary conditions of the formation
of the bifurcation for not only normal-yield, but also subyield states.

(v) The formation of the shear band and the diffuse bifurcation are affected markedly by the material
parameter R in the normal-yield ratio prescribing the approaching degree of stress to the normal-yield
state.
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